Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(2): 1276-1291, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38179648

RESUMO

Microorganisms rely on diverse ion transport and trace elements to sustain growth, development, and secondary metabolism. Manganese (Mn2+) is essential for various biological processes and plays a crucial role in the metabolism of human cells, plants, and yeast. In Aspergillus flavus, we confirmed that Pmr1 localized in cis- and medial-Golgi compartments was critical in facilitating Mn2+ transport, fungal growth, development, secondary metabolism, and glycosylation. In comparison to the wild type, the Δpmr1 mutant displayed heightened sensitivity to environmental stress, accompanied by inhibited synthesis of aflatoxin B1, kojic acid, and a substantial reduction in pathogenicity toward peanuts and maize. Interestingly, the addition of exogenous Mn2+ effectively rectified the developmental and secondary metabolic defects in the Δpmr1 mutant. However, Mn2+ supplement failed to restore the growth and development of the Δpmr1Δgdt1 double mutant, which indicated that the Gdt1 compensated for the functional deficiency of pmr1. In addition, our results showed that pmr1 knockout leads to an upregulation of O-glycosyl-N-acetylglucose (O-GlcNAc) and O-GlcNAc transferase (OGT), while Mn2+ supplementation can restore the glycosylation in A. flavus. Collectively, this study indicates that the pmr1 regulates Mn2+ via Golgi and maintains growth and metabolism functions of A. flavus through regulation of the glycosylation.


Assuntos
ATPases Transportadoras de Cálcio , Proteínas de Saccharomyces cerevisiae , Humanos , ATPases Transportadoras de Cálcio/metabolismo , Aflatoxina B1/metabolismo , Aspergillus flavus/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
2.
J Fungi (Basel) ; 8(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35736121

RESUMO

sfgA is known as a key negative transcriptional regulator gene of asexual sporulation and sterigmatocystin production in Aspergillus nidulans. However, here, we found that the homolog sfgA gene shows a broad and complex regulatory role in governing growth, conidiation, sclerotia formation, secondary metabolism, and environmental stress responses in Aspergillus flavus. When sfgA was deleted in A. flavus, the fungal growth was slowed, but the conidiation was significantly increased, and the sclerotia formation displayed different behavior at different temperatures, which increased at 30 °C but decreased at 36 °C. In addition, sfgA regulated aflatoxin biosynthesis in a complex way that was associated with the changes in cultured conditions, and the increased production of aflatoxin in the ∆sfgA mutant was associated with a decrease in sclerotia size. Furthermore, the ∆sfgA mutant exhibited sensitivity to osmotic, oxidative, and cell wall stresses but still produced dense conidia. Transcriptome data indicated that numerous development- and secondary-metabolism-related genes were expressed differently when sfgA was deleted. Additionally, we also found that sfgA functions downstream of fluG in A. flavus, which is consistent with the genetic position in FluG-mediated conidiation in A. nidulans. Collectively, sfgA plays a critical role in the development, secondary metabolism, and stress responses of A. flavus, and sfgA renders A. flavus more stable to the external environment.

4.
Braz J Microbiol ; 52(2): 821-835, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33447936

RESUMO

Antimicrobial peptides (AMPs) are biologically active molecules that can eradicate bacteria by destroying the bacterial membrane structure, causing the bacteria to rupture. However, little is known about the extent and effect of AMPs on filamentous fungi. In this study, we synthesized small molecular polypeptides by an inexpensive heat conjugation approach and examined their effects on the growth of Aspergillus flavus and its secondary metabolism. The antimicrobial agents significantly inhibited aflatoxin production, conidiation, and sclerotia formation in A. flavus. Furthermore, we found that the expression of aflatoxin structural genes was significantly inhibited, and the intracellular reactive oxygen species (ROS) level was reduced. Additionally, the antimicrobial agents can change membrane permeability. Overall, our results demonstrated that antimicrobial agents, safe to mammalian cells, have an obvious impact on aflatoxin production, which indicated that antimicrobial agents may be adopted as a new generation of potential agents for controlling aflatoxin contamination.


Assuntos
Aflatoxinas/biossíntese , Antifúngicos/síntese química , Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/síntese química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Metabolismo Secundário , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo
5.
Nat Prod Res ; 34(8): 1105-1112, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30638070

RESUMO

A novel aromatic compound, grandiuvarone B (5-acetoxy-3-benzoyloxymethyl-5H-oxepin-4-one), along with a known compound grandiuvarone A (5-acetoxy-6-benzoyloxymethyl-5H-oxepin-4-one) were isolated from methanol extracts of Desmos chinensis leaves. Their structures were determined by various spectroscopic techniques including nuclear magnetic resonance (NMR), high-resolution electrospray ionisation mass spectrometry (HR-ESI-MS) and circular dichroism (CD). Grandiuvarone A and grandiuvarone B are isomers and the S configuration of grandiuvarone B was reported for the first time. We then determined their antifungal activity against Aspergillus flavus. Results revealed that grandiuvarone B exhibited better antifungal activity against A. flavus, with MIC values of 0.01 mg/mL compared to grandiuvarone A (MIC values of 0.02 mg/mL). In the presence of each active compound at 160 µg/g of aquafeed, A. flavus growth was completely inhibited. Grandiuvarone B also showed antibacterial activity against the plant pathogen Ralstonia solanacearum.


Assuntos
Annonaceae/química , Antibacterianos/isolamento & purificação , Antifúngicos/isolamento & purificação , Oxepinas/isolamento & purificação , Folhas de Planta/química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Isomerismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxepinas/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Análise Espectral
6.
Front Microbiol ; 10: 1881, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456789

RESUMO

Nuclear protein LaeA is known as the global regulator of secondary metabolism in Aspergillus. LaeA connects with VeA and VelB to form a heterotrimeric complex, which coordinates fungal development and secondary metabolism. Here, we describe a new interaction partner of LaeA, the kinetochore protein Spc105, from the aflatoxin-producing fungus Aspergillus flavus. We showed that in addition to involvement in nuclear division, Spc105 is required for normal conidiophore development and sclerotia production of A. flavus. Moreover, Spc105 positively regulates the production of secondary metabolites such as aflatoxin and kojic acid, and negatively regulates the production of cyclopiazonic acid. Transcriptome analysis of the Δspc105 strain revealed that 23 backbone genes were differentially expressed, corresponding to 19 of the predicted 56 secondary metabolite gene clusters, suggesting a broad regulatory role of Spc105 in secondary metabolism. Notably, the reduced expression of laeA in our transcriptome data led to the discovery of the correlation between Spc105 and LaeA, and double mutant analysis indicated a functional interdependence between Spc105 and LaeA. Further, in vitro and in vivo protein interaction assays revealed that Spc105 interacts directly with the S-adenosylmethionine (SAM)-binding domain of LaeA, and that the leucine zipper motif in Spc105 is required for this interaction. The Spc105-LaeA interaction identified in our study indicates a cooperative interplay of distinct regulators in A. flavus, providing new insights into fungal secondary metabolism regulation networks.

7.
J Cell Physiol ; 234(12): 23337-23348, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31148200

RESUMO

Ganoderma lucidum immunomodulatory protein (FIP-glu) is an active ingredient with potential immunoregulatory functions. The study was conducted to explore the immunomodulatory activities of recombinant FIP-glu (rFIP-glu) and its possible mechanism in macrophage RAW264.7 cells. In vitro assays of biological activity indicated that rFIP-glu significantly activated RAW264.7 cells and possessed proinflammatory and anti-inflammatory abilities. RNA sequencing analysis and Western blot analysis showed that macrophage activation involved PI3K/Akt and MAPK pathways. Furthermore, real-time quantitative polymerase chain reaction indicated that the PI3K inhibitor LY294002 blocked the messenger RNA (mRNA) levels of MCP-1 (CCL-2), the MEK1/2 inhibitor U0126 reduced the mRNA levels of TNF-α and MCP-1 (CCL-2), and the JNK1/2/3 inhibitor SP600125 prevented the upregulation of inducible nitric oxide synthase mRNA in rFIP-glu-induced cells. rFIP-glu did not mediate these inflammatory effects through a general pathway but rather through a different pathway for a different inflammatory mediator. These data imply that rFIP-glu possessed immunomodulatory activity in macrophages, which was mediated through PI3K/Akt and MAPK pathways.


Assuntos
Proteínas Fúngicas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Reishi , Animais , Imunomodulação/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7
8.
Toxins (Basel) ; 10(7)2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970790

RESUMO

Aflatoxin biosynthesis is correlated with oxidative stress and is proposed to function as a secondary defense mechanism to redundant intracellular reactive oxygen species (ROS). We find that the antioxidant gallic acid inhibits aflatoxin formation and growth in Aspergillus flavus in a dose-dependent manner. Global expression analysis (RNA-Seq) of gallic acid-treated A. flavus showed that 0.8% (w/v) gallic acid revealed two possible routes of aflatoxin inhibition. Gallic acid significantly inhibited the expression of farB, encoding a transcription factor that participates in peroxisomal fatty acid β-oxidation, a fundamental contributor to aflatoxin production. Secondly, the carbon repression regulator encoding gene, creA, was significantly down regulated by gallic acid treatment. CreA is necessary for aflatoxin synthesis, and aflatoxin biosynthesis genes were significantly downregulated in ∆creA mutants. In addition, the results of antioxidant enzyme activities and the lipid oxidation levels coupled with RNA-Seq data of antioxidant genes indicated that gallic acid may reduce oxidative stress through the glutathione- and thioredoxin-dependent systems in A. flavus.


Assuntos
Aflatoxinas/biossíntese , Antioxidantes/farmacologia , Aspergillus flavus/efeitos dos fármacos , Ácido Gálico/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Proteínas Fúngicas/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Fatores de Transcrição/genética
9.
Front Microbiol ; 8: 1925, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29051754

RESUMO

Aspergillus flavus is a saprophytic soil fungus that poses a serious threat worldwide as it contaminates many food and feed crops with the carcinogenic mycotoxin called aflatoxin. This pathogen persists as sclerotia in the soil which enables fungal survival in harsh environmental conditions. Sclerotia formation by A. flavus depends on successful cell communication and hyphal fusion events. Loss of LaeA, a conserved developmental regulator in fungi, abolishes sclerotia formation in this species whereas overexpression (OE) of laeA results in enhanced sclerotia production. Here we demonstrate that sclerotia loss and inability to form heterokaryons in A. flavusΔlaeA is mediated by homologs of the Neurospora crassa ham (hyphal anastomosis) genes termed hamE-I in A. flavus. LaeA positively regulates ham gene expression and deletion of hamF, G, H, or I phenocopies ΔlaeA as demonstrated by heterokaryon and sclerotia loss and reduced aflatoxin synthesis and virulence of these mutants. Deletion of hamE showed a less severe phenotype. hamE-I homologs are positively regulated by the clock controlled transcription factor ADV-1 in N. crassa. Similarly, the ADV-1 homolog NosA regulates hamE-I expression in A. flavus, is required for sclerotial development and is itself positively regulated by LaeA. We speculate that a putative LaeA>NosA>fusion cascade underlies the previously described circadian clock regulation of sclerotia production in A. flavus.

10.
Fungal Biol ; 121(5): 501-514, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28390507

RESUMO

DNA methylation is an important epigenetic modification that depends on DNA methyltransferases (DMT). However, the filamentous fungus Aspergillus flavus has no detectable methylation, and role of a DMT homologue, DmtA, is undefined. Here we describe the role of the dmtA gene responding to changes in the environment by comparing knockout, point mutation, over-expression and wild type strains. Deletion of dmtA differentially affected conidia development in a media-dependent fashion, which suggests that dmtA plays an important role in conidiation. Furthermore, ΔdmtA strains lost the capacity to form the resistant structure, sclerotia, and alleviated sensitivity to several stress conditions, such as high osmotic pressure, hypoxia, low water activity and a high calcium concentration. We also noticed that deletion of dmtA and mutation C377S in DmtA negatively affected aflatoxin production and down regulated the expression of some early (fas-1, pksA, nor-1), middle and late (nor-A, ver-1, avnA, omtB) genes in the aflatoxin biosynthetic cluster. Finally, we found that all tested strains showed a similar phenotype when treated with 5-azacytidine. Our results indicate that the dmtA gene is important in regulation of aflatoxin biosynthesis and for A. flavus to adapt to stressful environments and for survival, although it may hold no apparent function in DNA methylation.


Assuntos
Aspergillus flavus/enzimologia , Aspergillus flavus/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Estresse Fisiológico , Adaptação Fisiológica , Aflatoxinas/metabolismo , Aspergillus flavus/crescimento & desenvolvimento , Expressão Gênica , Técnicas de Inativação de Genes , Viabilidade Microbiana , Mutação Puntual , Esporos Fúngicos/crescimento & desenvolvimento
11.
Enzyme Microb Technol ; 84: 24-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26827771

RESUMO

Functional screening of a metagenomic library of termite hindgut identified an overlapping gene cluster encoding the phosphotransferase system (PTS) components, which consisted of a glucoside specific PTS enzyme II gene (glu1923) and a glycoside hydrolase gene (glu1392). Hydrolytic experiments revealed that the combined effect of Glu1923 and Glu1392 was responsible for the utilization of glucosidic substrates in recombinant Escherichia coli (E. coli) strains. Yeast two hybrid analysis suggested that there was an interaction between Glu1923 and Glu1392, and the domain EIIA of Glu1923 played an important role for the interaction. In addition, the hydrolase Glu1392 displayed hydrolysis ability toward cellobiose and maltose, and had a very high tolerance to glucose with a Ki value of 2.25M. These properties make Glu1392 an interesting candidate in biotechnology applications after further study.


Assuntos
Glucosidases/genética , Proteínas de Insetos/genética , Isópteros/enzimologia , Isópteros/genética , Fosfotransferases/genética , Animais , Biotecnologia , Estabilidade Enzimática , Biblioteca Gênica , Genoma de Inseto , Glucosidases/química , Glucosidases/metabolismo , Hidrólise , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Cinética , Metagenoma , Família Multigênica , Fosfotransferases/química , Fosfotransferases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
12.
Fungal Biol ; 119(7): 605-14, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26058536

RESUMO

The interactions between aflatoxin-producing fungi and bacteria have opened up a new avenue for identifying biological agents suitable for controlling aflatoxin contamination. In this study, we analysed the interactions between A. flavus and the bacterium Burkholderia gladioli M3 that coexist in rice that is naturally contaminated with A. flavus. Our results showed that a cell-free culture filtrate (CCF) and the metabolite bongkrekic acid of the M3 strain potently suppressed the mycelial growth and spore production, and then affected the production of aflatoxin of A. flavus. Bongkrekic acid secreted by the M3 strain exhibited higher antifungal activity than did analogues. The CCF of the M3 strain and its metabolite bongkrekic acid can inhibit the growth of A. flavus, but the metabolites of A. flavus, aflatoxins, exerted no inhibitory effect on the growth of the M3 strain. Furthermore, we determined that the M3 cells could use the dead mycelia of A. flavus as energy sources for reproduction, while A. flavus could not grow in a solution containing dead M3 cells. In summary, these results indicated that B. gladioli has a competitive advantage in survival when it coexists with its fungal partner A. flavus.


Assuntos
Aflatoxinas/metabolismo , Aspergillus flavus/metabolismo , Burkholderia gladioli/metabolismo , Oryza/microbiologia , Aspergillus flavus/crescimento & desenvolvimento , Ácido Bongcréquico/metabolismo , Burkholderia gladioli/química , Burkholderia gladioli/crescimento & desenvolvimento
13.
Fungal Genet Biol ; 56: 78-86, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23644151

RESUMO

Aspergillus flavus is a common saprophyte and opportunistic pathogen producing aflatoxin (AF) and many other secondary metabolites. 5-Azacytidine (5-AC), a derivative of the nucleoside cytidine, is widely used for studies in epigenetics and cancer biology as an inactivator of DNA methyltransferase and is also used for studying secondary metabolism in fungi. Our previous studies showed that 5-AC affects development and inhibits AF production in A. flavus, and that A. flavus lacks DNA methylation. In this study, an RNA-Seq approach was applied to explore the mechanism of 5-AC's effect on A. flavus. We identified 240 significantly differentially expressed (Q-value<0.05) genes after 5-AC treatment, including two backbone genes respectively in secondary metabolite clusters #27 and #35. These two clusters are involved in development or survival of sclerotia. GO functional enrichment analysis showed that these significantly differentially expressed genes were mainly involved in catalytic activity and proteolytic functions. The expressed transcripts of most genes in the AF biosynthetic gene cluster in A. flavus showed no significant changes after treatment with 5-AC and were expressed at low levels, and the transcription regulator genes aflR and aflS in this cluster did not show differential expression relative to the sample without 5-AC treatment. We found that the veA gene, which encodes protein bridges VelB and LaeA, decreased profoundly the expressed transcripts, and brlA, which encodes an early regulator of development, increased its transcripts in A. flavus after 5-AC treatment. Our data support a model whereby 5-AC affects development through increasing the expression of brlA by depressing the expression of veA and AF production through suppressing veA expression and dysregulating carboxypeptidase activity, which then prevents the aflatoxisomes (vesicles) from performing their normal function in AF formation. Furthermore, the suppressed veA expression weakens or even interrupts the connection between VelB and LaeA, leading to dysregulation of the expression pattern of genes involved in development and secondary metabolism in A. flavus. The RNA-seq data presented in this work were also served to improve the annotation of the A. flavus genome. This work provides a comprehensive view of the transcriptome of A. flavus responsive to 5-AC and supports the conclusion that fungal development and secondary metabolism are co-regulated.


Assuntos
Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/genética , Azacitidina/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Transcriptoma , Aflatoxinas/biossíntese
14.
PLoS One ; 7(1): e30349, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22276181

RESUMO

Aspergillus flavus first gained scientific attention for its production of aflatoxin. The underlying regulation of aflatoxin biosynthesis has been serving as a theoretical model for biosynthesis of other microbial secondary metabolites. Nevertheless, for several decades, the DNA methylation status, one of the important epigenomic modifications involved in gene regulation, in A. flavus remains to be controversial. Here, we applied bisulfite sequencing in conjunction with a biological replicate strategy to investigate the DNA methylation profiling of A. flavus genome. Both the bisulfite sequencing data and the methylome comparisons with other fungi confirm that the DNA methylation level of this fungus is negligible. Further investigation into the DNA methyltransferase of Aspergillus uncovers its close relationship with RID-like enzymes as well as its divergence with the methyltransferase of species with validated DNA methylation. The lack of repeat contents of the A. flavus' genome and the high RIP-index of the small amount of remanent repeat potentially support our speculation that DNA methylation may be absent in A. flavus or that it may possess de novo DNA methylation which occurs very transiently during the obscure sexual stage of this fungal species. This work contributes to our understanding on the DNA methylation status of A. flavus, as well as reinforces our views on the DNA methylation in fungal species. In addition, our strategy of applying bisulfite sequencing to DNA methylation detection in species with low DNA methylation may serve as a reference for later scientific investigations in other hypomethylated species.


Assuntos
Aspergillus flavus/genética , Metilação de DNA/genética , DNA Fúngico/genética , DNA Fúngico/química , Análise de Sequência de DNA , Sulfitos/química
15.
Folia Microbiol (Praha) ; 55(2): 159-66, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20490759

RESUMO

An increased infection incidence of Candida albicans (most common human fungal pathogen) contributes to the need of further functional genetic studies and development of new antifungal drugs. We developed a method to create mutants of C. albicans using an antisense cDNA library to interfere with gene expression, followed by screening for hypersensitivity to Calcofluor White (CFW) and the antifungal drugs caspofungin and itraconazole. Mutants with these properties have with a high probability defects in cell-wall integrity. Fifty out of 200 transformant colonies analyzed (25%) showed hypersensitivity to CFW compared with the parental strain C. albicans CAI-4. Most of those CFW-hypersensitive mutants further displayed the susceptibility to antifungal drugs itraconazole and caspofungin using microbroth dilution method M27-A and an agar-diffusion test. The mutants obtained through this procedure could provide a potential model for screening antifungal pro-drugs which show weak action when standard C. albicans strain is used and may also aid in further identifying genes involved in cell integrity. In addition, we describe the effect of varying several parameters in electroporation transformation, including treatment with lithium acetate, upon the efficiency of transformation in C. albicans.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Equinocandinas/farmacologia , Caspofungina , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Lipopeptídeos , Testes de Sensibilidade Microbiana , Mutação
16.
Genetica ; 133(2): 207-14, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17805977

RESUMO

To assess the utility of the tomato fruit-specific E8 gene's promoter for driving vaccine antigen expression in plant, the 2.2 kb and 1.1 kb E8 promoters were isolated and sequenced from Lycopersicon esculentum cv. Jinfeng #1. The 1.1 kb promoter was fused to vaccine antigen HBsAg M gene for the transfer to Nicotiana tabacum, and the CaMV 35S promoter was used for comparison. Cholera toxin B (ctb) gene under the control of the 1.1 kb promoter was transformed into both N. tabacum and L. esculentum. Southern blot hybridization confirmed the stable integration of the target genes into the tomato and tobacco genomes. ELISA assay showed that the expression product of HBsAg M gene under the control of the 1.1 kb E8 promoter could not be detected in transgenic tobacco tissues such as leaves, flowers, and seeds. In contrast, the expression of HBsAg M gene driven by CaMV 35S promoter could be detected in transgenic tobacco. ELISA assay for CTB proved that the 1.1 kb E8 promoter was able to direct the expression of exotic gene in ripe fruits of transgenic tomato, but expression was absent in leaf, flower, and unripe fruit of tomato, and CTB protein was not detected in transgenic tobacco tissues such as leaves, flowers, and seeds when the gene was under the control of the 1.1 kb E8 promoter. The results indicated that the E8 promoter acted not only in an organ-specific, but also in a species-specific fashion in plant transformation.


Assuntos
Vetores Genéticos , Antígenos de Superfície da Hepatite B/genética , Regiões Promotoras Genéticas , Solanum lycopersicum/genética , Vacinas de DNA/genética , Caulimovirus/genética , Toxina da Cólera/genética , Clonagem Molecular , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Vetores Genéticos/síntese química , Vetores Genéticos/genética , Plantas Geneticamente Modificadas , Transformação Genética , Vacinação/métodos
17.
BMC Microbiol ; 7: 104, 2007 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-18039373

RESUMO

BACKGROUND: An available whole genome sequence for Aspergillus flavus provides the opportunity to characterize factors involved in pathogenicity and to elucidate the regulatory networks involved in aflatoxin biosynthesis. Functional analysis of genes within the genome is greatly facilitated by the ability to disrupt or mis-express target genes and then evaluate their result on the phenotype of the fungus. Large-scale functional analysis requires an efficient genetic transformation system and the ability to readily select transformants with altered expression, and usually requires generation of double (or multi) gene deletion strains or the use of prototrophic strains. However, dominant selectable markers, an efficient transformation system and an efficient screening system for transformants in A. flavus are absent. RESULTS: The efficiency of the genetic transformation system for A. flavus based on uracil auxotrophy was improved. In addition, A. flavus was shown to be sensitive to the antibiotic, phleomycin. Transformation of A. flavus with the ble gene for resistance to phleomycin resulted in stable transformants when selected on 100 mug/ml phleomycin. We also compared the phleomycin system with one based on complementation for uracil auxotrophy which was confirmed by uracil and 5-fluoroorotic acid selection and via transformation with the pyr4 gene from Neurospora crassa and pyrG gene from A. nidulans in A. flavus NRRL 3357. A transformation protocol using pyr4 as a selectable marker resulted in site specific disruption of a target gene. A rapid and convenient colony PCR method for screening genetically altered transformants was also developed in this study. CONCLUSION: We employed phleomycin resistance as a new positive selectable marker for genetic transformation of A. flavus. The experiments outlined herein constitute the first report of the use of the antibiotic phleomycin for transformation of A. flavus. Further, we demonstrated that this transformation protocol could be used for directed gene disruption in A. flavus. The significance of this is twofold. First, it allows strains to be transformed without having to generate an auxotrophic mutation, which is time consuming and may result in undesirable mutations. Second, this protocol allows for double gene knockouts when used in conjunction with existing strains with auxotrophic mutations. To further facilitate functional analysis in this strain we developed a colony PCR-based method that is a rapid and convenient method for screening genetically altered transformants. This work will be of interest to those working on molecular biology of aflatoxin metabolism in A. flavus, especially for functional analysis using gene deletion and gene expression.


Assuntos
Aspergillus flavus/genética , Transformação Genética , Antifúngicos/farmacologia , Southern Blotting , Farmacorresistência Fúngica/genética , Genes Fúngicos , Teste de Complementação Genética , Mutagênese , Mutagênese Insercional , Ácido Orótico/análogos & derivados , Ácido Orótico/metabolismo , Fleomicinas/farmacologia , Reação em Cadeia da Polimerase/métodos , Protoplastos , Esporos Fúngicos/genética , Uracila/biossíntese
18.
Transgenic Res ; 16(2): 169-75, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17225072

RESUMO

Cholera toxin B (CTB) subunit is a well-characterized antigen against cholera. Transgenic plants can offer an inexpensive and safe source of edible CTB vaccine and may be one of the best candidates for the production of plant vaccines. The present study aimed to develop transgenic tomato expressing CTB protein, especially in the ripening tomato fruit under the control of the tomato fruit-specific E8 promoter by using Agrobacterium-mediated transformation. Transgenic plants were selected using PCR and Southern blot analysis. Exogenous protein extracted from leaf, stem, and fruit tissues of transgenic plants was detected by ELISA and Western blot analysis, showing specific expression in the ripening fruit, with the highest amount of CTB protein being 0.081% of total soluble protein. Gavage of mice with ripe transgenic tomato fruits induced both serum and mucosal CTB specific antibodies. These results demonstrate the immunogenicity of the CTB protein in transgenic tomato and provide a considerable basis for exploring the utilization of CTB in the development of tomato-based edible vaccine against cholera. The rCTB antigen resulted in much lower antibody titers than an equal amount of exogenous CTB in transgenic fruits, suggesting the protective effect of the fibrous tissue of the fruit to the exogenous CTB protein against the degradation of protease in the digestive tracts of mice.


Assuntos
Toxina da Cólera/imunologia , Plantas Geneticamente Modificadas , Solanum lycopersicum/genética , Animais , Toxina da Cólera/genética , Camundongos
19.
Planta ; 220(5): 717-30, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15490228

RESUMO

Brassica juncea BjCHI1 is a unique chitinase with two chitin-binding domains. Here, we show that, unlike other chitinases, potato-expressed BjCHI1 shows hemagglutination ability. BjCHI1 expression in B. juncea seedlings is induced by Rhizoctonia solani infection, suggesting its protective role against this fungus. To verify this, transgenic potato (Solanum tuberosum L. cv. Desiree) plants expressing BjCHI1 generated by Agrobacterium-mediated transformation were challenged with R. solani. We also transformed potato with a cDNA encoding Hevea brasiliensis beta-1,3-glucanase, designated HbGLU, and a pBI121-derivative that contains cDNAs encoding both BjCHI1 and HbGLU. In vitro fungal bioassays using Trichoderma viride showed that extracts from transgenic potato lines co-expressing BjCHI1 and HbGLU inhibited fungal growth better than extracts from transgenic potato expressing either BjCHI1 or HbGLU, suggesting a synergistic effect. Consistently, in vivo fungal bioassays with soil-borne R. solani on young transgenic potato plants indicated that the co-expressing plants showed healthier root development than untransformed plants or those that expressed either BjCHI1 or HbGLU. Light microscopy and transmission electron microscopy revealed abundant intact R. solani hyphae and monilioid cells in untransformed roots and disintegrated fungus in the BjCHI1-expressing and the BjCHI1 and HbGLU co-expressing plants. Observations of collapsed epidermal cells in the co-expressing potato roots suggest that these proteins effectively degrade the fungal cell wall, producing elicitors that initiate other defense responses causing epidermal cell collapse that ultimately restricts further fungal penetration.


Assuntos
Quitinases/metabolismo , Mostardeira/enzimologia , Doenças das Plantas/microbiologia , Rhizoctonia , Solanum tuberosum/genética , Sequência de Aminoácidos , Quitinases/genética , Quitinases/fisiologia , Regulação da Expressão Gênica de Plantas , Glucana 1,3-beta-Glucosidase/genética , Glucana 1,3-beta-Glucosidase/metabolismo , Hevea/enzimologia , Doenças das Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , RNA Mensageiro/análise
20.
Di Yi Jun Yi Da Xue Xue Bao ; 22(8): 736-8, 2002 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-12376266

RESUMO

OBJECTIVE: To construct the plant expression vector containing the nucleotide sequence encoding cholera toxin B (CTB) subunits. METHOD: Using high-fidelity PCR, we amplified CTB genes that were then subcloned into the transition vector pRTL2. Following confirmation of the CTB nucleotide sequence, the vector was subcloned into the plant vector pBI121 that was subsequently transferred into Agrobacterium tumefaciens LBA4404 by electroporation. RESULTS: CTB DNA that was ligated into the transition vectors resulted in the 2 vectors designated as pRCTB and pRCTBK. After the 2 vectors were ligated into the plant binary vector pBI121 respectively, new plant binary vectors, namely pBI-CTB and pBI-CTBK, were produced. Analysis with restriction endonucleases confirmed successful transfer of pBI-CTB and pBI-CTBK into Agrobacterium tumefaciens LBA4404. CONCLUSION: With appropriate technological strategy, the plant binary expression vectors encoding CTB have been constructed, which facilitates further investigation of CTB protein expressions in transgenic plant.


Assuntos
Toxina da Cólera/genética , Genes de Plantas , Toxina da Cólera/biossíntese , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...